首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13589篇
  免费   1304篇
  国内免费   1143篇
  2023年   403篇
  2022年   360篇
  2021年   717篇
  2020年   759篇
  2019年   940篇
  2018年   659篇
  2017年   480篇
  2016年   542篇
  2015年   547篇
  2014年   687篇
  2013年   988篇
  2012年   493篇
  2011年   569篇
  2010年   432篇
  2009年   543篇
  2008年   552篇
  2007年   576篇
  2006年   525篇
  2005年   525篇
  2004年   443篇
  2003年   420篇
  2002年   344篇
  2001年   227篇
  2000年   216篇
  1999年   204篇
  1998年   177篇
  1997年   162篇
  1996年   160篇
  1995年   188篇
  1994年   164篇
  1993年   118篇
  1992年   112篇
  1991年   127篇
  1990年   97篇
  1989年   75篇
  1987年   79篇
  1986年   78篇
  1985年   126篇
  1984年   128篇
  1983年   86篇
  1982年   113篇
  1981年   106篇
  1980年   97篇
  1979年   83篇
  1978年   80篇
  1977年   85篇
  1976年   78篇
  1975年   81篇
  1974年   79篇
  1973年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Abnormal activation of the Wnt/β-catenin signaling pathway and subsequent upregulation of β-catenin driven downstream targets—c-Myc and cyclin D1 is associated with development of breast cancer. The objective of our study was to determine if curcumin could modulate the key elements of Wnt pathway in breast cancer cells; an effect that might underscore its usefulness for chemoprevention/treatment of this malignancy. Curcumin showed a cytotoxic effect on MCF-7 cells with 50% inhibitory concentration (IC50) of 35 μM; while IC50 for MDA-MB-231 cells was 30 μM. Treatment with low cytostatic dose of 20 μM curcumin showed G2/M arrest in both breast cancer cells. The effect of curcumin (20 μM) treatment on expression of Wnt/β-catenin pathway components in breast cancer cells (MCF-7 and MDA-MB-231) was analyzed by immunofluorescence and Western blotting. Curcumin was found to effectively inhibit the expression of several Wnt/β-catenin pathway components—disheveled, β-catenin, cyclin D1 and slug in both MCF-7 and MDA-MB-231. Immunofluorescence analysis showed that curcumin markedly reduced the nuclear expression of disheveled and β-catenin proteins. Further, the protein levels of the positively regulated β-catenin targets—cyclin D1 and slug, were downregulated by curcumin treatment. The expression levels of two integral proteins of Wnt signaling, GSK3β and E-cadherin were also altered by curcumin treatment. In conclusion, our data demonstrated that the efficacy of curcumin in inhibition of cell proliferation and induction of apoptosis might occur through modulation of β-catenin pathway in human breast cancer cells.  相似文献   
992.
Cerebral malaria (CM) can be a fatal manifestation of Plasmodium falciparum infection. In this study, two different approaches were used to examine the role of indoleamine 2,3-dioxygenase-1 (IDO-1) and its metabolites in the development of murine CM. Mice genetically deficient in IDO-1 were not protected against CM, but partial protection was observed in C57BL/6 mice treated with Ro 61-8048, an inhibitor of kynurenine-3-hydroxylase. This protection was associated with suppressed levels of picolinic acid (PA) within the brain, but not with changes in the levels of kynurenic acid (KA) or quinolinic acid (QA). These data suggest that although IDO-1 is not directly involved in the pathogenesis of CM in C57BL/6 mice, the production of the kynurenine pathway metabolite PA may contribute to the development of murine CM.  相似文献   
993.
994.
Carotenoid biosynthesis is highly conserved and well characterized up to the synthesis of β‐carotene. Conversely, the synthesis of astaxanthin from β‐carotene is less well characterized. Regardless, astaxanthin is a highly sought natural product, due to its various industrial applications and elevated antioxidant capacity. In this article, 12 β‐carotene ketolase and 4 β‐carotene hydroxylase genes, isolated from 5 cyanobacterial species, are investigated for their function, and potential for microbial astaxanthin synthesis. Further, this in vivo comparison identifies and applies the most promising genetic elements within a dual expression vector, which is maintained in Escherichia coli. Here, combined overexpression of individual β‐carotene ketolase and β‐carotene hydroxylase genes, within a β‐carotene accumulating host, enables a 23.5‐fold improvement in total carotenoid yield (1.99 mg g?1), over the parental strain, with >90% astaxanthin. Biotechnol. Bioeng. 2009;103: 944–955. © 2009 Wiley Periodicals, Inc.  相似文献   
995.
Hypothermia is the most effective means of protecting the brain, heart and other organs during ischemia/reperfusion (I/R) injury. However, the precise mechanisms for hypothermia to inhibit I/R-induced endothelial cell apoptosis are not fully understood. In the present study, human umbilical endothelial cells (HUVECs) were exposed to ischemia followed by reperfusion under normothermia (37 °C) or hypothermia (33 °C). Our results showed that hypothermia markedly reduced I/R-induced endothelial cell apoptosis, the expression of cleaved caspase-3 and PARP. Moreover, hypothermia markedly reversed I/R-induced activation of Fas/caspase-8, the increase of Bax and decrease of Bcl-2. Furthermore, hypothermia inhibited JNK1/2 activation via MKP-1 induction. Together, these data demonstrate that hypothermia represses I/R-induced endothelial cell apoptosis by inhibiting both extrinsic- and intrinsic-dependent apoptotic pathways and activation of JNK1/2.  相似文献   
996.
Nine pharmaceutical inhibitors of eicosanoid biosynthesis (e.g., bromophenacyl bromide, clotrimazole, diclofenamic acid, esculetin, flufenamic acid, indomethacin, nimesulide, sulindac, tolfenamic acid) that increased the susceptibility of the gypsy moth, Lymantria dispar (L.), to the nucleopolyhedrovirus LdMNPV were tested against the beet armyworm Spodoptera exigua (Hübner), the corn earworm Helicoverpa zea (Boddie) and the fall armyworm Spodoptera frugiperda (J.E. Smith) and their respective NPVs to determine whether these compounds also alter the susceptibility of these insects. The susceptibility of the beet armyworm was increased by six inhibitors (bromophenacyl bromide, clotrimazole, diclofenic acid, esculetin, flufenamic acid, nimesulide). The susceptibility of the fall armyworm was increased by seven inhibitors, (bromophenacyl bromide, diclofenamic acid, esculetin, indomethacin, nimesulide, sulindac, tolfenamic acid), whereas the susceptibility of the corn earworm was increased by only one inhibitor (sulindac). The influence of the cyclooxygenase inhibitor, indomethacin was expressed in a concentration-related manner in beet armyworms. We infer from these findings that eicosanoids, including prostaglandins and lipoxygenase products, act in insect anti-viral defenses.  相似文献   
997.
The mammalian Δ6-desaturase coded by fatty acid desaturase 2 (FADS2; HSA11q12-q13.1) catalyzes the first and rate-limiting step for the biosynthesis of long-chain polyunsaturated fatty acids. FADS2 is known to act on at least five substrates, and we hypothesized that the FADS2 gene product would have Δ8-desaturase activity. Saccharomyces cerevisiae transformed with a FADS2 construct from baboon neonate liver cDNA gained the function to desaturate 11,14-eicosadienoic acid (20:2n-6) and 11,14,17-eicosatrienoic acid (20:3n-3) to yield 20:3n-6 and 20:4n-3, respectively. Competition experiments indicate that Δ8-desaturation favors activity toward 20:3n-3 over 20:2n-6 by 3-fold. Similar experiments show that Δ6-desaturase activity is favored over Δ8-desaturase activity by 7-fold and 23-fold for n-6 (18:2n-6 vs 20:2n-6) and n-3 (18:3n-3 vs 20:3n-3), respectively. In mammals, 20:3n-6 is the immediate precursor of prostaglandin E1 and thromboxane B1. 20:3n-6 and 20:4n-3 are also immediate precursors of long-chain polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid, respectively. These findings provide unequivocal molecular evidence for a novel alternative biosynthetic route to long-chain polyunsaturated fatty acids in mammals from substrates previously considered to be dead-end products.  相似文献   
998.
999.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号